70 research outputs found

    Tumor-Derived Granulocyte-Macrophage Colony-Stimulating Factor Regulates Myeloid Inflammation and T Cell Immunity in Pancreatic Cancer

    Get PDF
    SummaryCancer-associated inflammation is thought to be a barrier to immune surveillance, particularly in pancreatic ductal adenocarcinoma (PDA). Gr-1+ CD11b+ cells are a key feature of cancer inflammation in PDA, but remain poorly understood. Using a genetically engineered mouse model of PDA, we show that tumor-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) is necessary and sufficient to drive the development of Gr-1+ CD11b+ cells that suppressed antigen-specific T cells. In vivo, abrogation of tumor-derived GM-CSF inhibited the recruitment of Gr-1+ CD11b+ cells to the tumor microenvironment and blocked tumor development—a finding that was dependent on CD8+ T cells. In humans, PDA tumor cells prominently expressed GM-CSF in vivo. Thus, tumor-derived GM-CSF is an important regulator of inflammation and immune suppression within the tumor microenvironment

    Adipocytes promote pancreatic cancer cell proliferation via glutamine transfer

    Get PDF
    AbstractAdipocytes promote progression of multiple cancers, but their role in pancreatic intraepithelial neoplasia (PanIN) and ductal adenocarcinoma (PDAC) is poorly defined. Nutrient transfer is a mechanism underlying stromal cell-cancer crosstalk. We studied the role of adipocytes in regulating in vitro PanIN and PDAC cell proliferation with a focus on glutamine metabolism. Murine 3T3L1 adipocytes were used to model adipocytes. Cell lines derived from PKCY mice were used to model PanIN and PDAC. Co-culture was used to study the effect of adipocytes on PanIN and PDAC cell proliferation in response to manipulation of glutamine metabolism. Glutamine secretion was measured with a bioanalyzer. Western blotting was used to study the effect of PanIN and PDAC cells on expression of glutamine-related enzymes in adipocytes. Adipocytes promote proliferation of PanIN and PDAC cells, an effect that was amplified in nutrient-poor conditions. Adipocytes secrete glutamine and rescue PanIN and PDAC cell proliferation in the absence of glutamine, an effect that was glutamine synthetase-dependent and involved PDAC cell-induced down-regulation of glutaminase expression in adipocytes. These findings suggest glutamine transfer as a potential mechanism underlying adipocyte-induced PanIN and PDAC cell proliferation

    OPCML Is a Broad Tumor Suppressor for Multiple Carcinomas and Lymphomas with Frequently Epigenetic Inactivation

    Get PDF
    Background: Identification of tumor suppressor genes (TSGs) silenced by CpG methylation uncovers the molecular mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common multiple tumors including nasopharyngeal carcinoma (NPC). OPCML, located at 11q25, is one of the downregulated genes we identified through digital expression subtraction. Methodology/Principal Findings: Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast, cervix, prostate), lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma) and primary tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression of OPCML led to significant inhibition of both anchorage-dependent and -indendent growth of carcinoma cells with endogenous silencing. Conlusions/Significance: Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies. © 2008 Cui et al.published_or_final_versio

    Creation of Primary Cell Lines from Lineage-Labeled Mouse Models of Cancer

    No full text

    Three-Dimensional Organotypic Culture of Stratified Epithelia

    No full text
    • 

    corecore